skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sohier, T."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We report electron transport measurements in dual-gated monolayer WS2 encapsulated in hexagonal boron-nitride. Using gated Ohmic contacts that operate from room temperature down to 1.5 K, we measure the intrinsic conductivity and carrier density as a function of temperature and gate bias. Intrinsic electron mobilities of 100 cm2/(V s) at room temperature and 2000 cm2/(V s) at 1.5 K are achieved. The mobility shows a strong temperature dependence at high temperatures, consistent with phonon scattering dominated carrier transport. At low temperature, the mobility saturates due to impurity and long-range Coulomb scattering. First-principles calculations of phonon scattering in monolayer WS2 are in good agreement with the experimental results, showing we approach the intrinsic limit of transport in these two-dimensional layers. 
    more » « less